World Kill the Password Day

This World Password Day, let’s examine why the world has not yet managed to kill the password.

Today is World Password Day. It’s also Star Wars Day, which will get far more attention from far more people (May the Fourth be with you). It also happens to be National Orange Juice Day. And a few other days. This confusion is appropriate for World Password Day, because while the occasion is about improving password habits, the world has turned decidedly against passwords. Headlines from the past few years demonstrate a consistent stream of invective toward them:

2013: “PayPal and Apple Want to Kill Your Password

2014: “Inside Twitter’s ambitious plan to kill the password

2015: “White House goal: Kill the password

2016: “Google aims to kill passwords by the end of this year

2017: “Facebook wants to kill the password

And yet, not one of these efforts has succeeded in “killing the password”—as we can see from the fact that every major online service still requires them.

Why is this the case? To explore this question, it is useful to first examine the function that passwords serve. Online applications must ensure that only authorized users are able to access their data or functionality. In order to do this, the application requires some form of proof that the user who is accessing the application is who they say they are. Passwords are a “shared secret” between the authorized user and the application, and if the user accessing the application demonstrates they know this secret, the application assumes that they are the authorized user. Unfortunately, unauthorized users may learn this shared secret, through various types of attacks, so passwords simply do not provide a good proof of identity. And yet, the password continues to be the universal method of online authentication.

So what about all of the technologies that have gained popularity in recent years, like two-factor authentication using mobile devices and fingerprint scanners? Let’s take a look at some of these alternatives and why they haven’t been able to replace passwords.

Standard biometrics, like fingerprint and iris-based authentication, are convenient in that you always have them available on your person, but you obviously cannot change them. Soft biometrics, like voice and typing pattern analysis, are similar convenient, but have too much variation to be used for anything but negative authentication. Hard and soft tokens, in the form of dedicated hardware or personal mobile devices, are inconvenient to access and often difficult to use. And finally, device-based authentication is also only suitable for negative authentication, since users use multiple devices or may lose their authorized device.

There are some common benefits and drawbacks of these approaches which start to appear. This is because every system for authentication fits into the well-known framework of:

1. Something you know (such as a password)

2. Something you have (such as a mobile phone)

3. Something you are (such as a fingerprint)

The problem is that each part of this framework has different strengths and weaknesses. “Something you know” is convenient and changeable, but it can also be stolen easily, especially if copied somewhere and stored insecurely. “Something you have” is harder to steal, but is also not always with you. And “Something you are” is always available to you, but the description of what you are (say, a scan of your iris) cannot be changed if stolen from an insecure service that stored it. What this means is that the only true replacement for passwords will come from a mechanism that offers the same benefits as “something you know”, and yet somehow addresses its drawbacks.

Security challenge questions: the worst second factor

Some systems have tried to use security challenge questions as an additional authentication factor, especially for password recovery, but these are one of the worst developments in online security. Their problem is that they combine the drawbacks of passwords (answers can be stolen through data breaches), with the drawbacks of biometrics (you can’t change your mother’s maiden name or the street where you grew up), and add their own unique drawbacks (answers can be guessed through social media). Most security professionals now enter random information into such security challenge questions, but that effectively creates additional passwords, which offer no benefit over a single, strong password, except for use as a backup password.

But there is a more fundamental conflict which underpins our continued reliance on passwords: the fact that security and convenience are usually at odds. Moving toward three-factor authentication (one factor from each category), using a combination of something like a password, a soft token, and biometrics, one can create a relatively secure authentication mechanism, but this is much less convenient for most users.

Users value convenience over security (yet still expect security)

For many years, the public has been learning of the need for everyone to select strong passwords. But most people still don’t. Recently, because of the Yahoo and other data breaches, the public started to learn that even if they select strong passwords, they should never reuse them across sites. But most people still do. Password managers aren’t silver bullets, and are subject to their own vulnerabilities, but their widespread use would dramatically improve both of the above issues. Unfortunately, most people don’t use them. Multi-factor authentication, specifically two-factor authentication using mobile phones, is now offered on most major online services. While everyone should enable it, most people won’t, due to the difficulty of use or the lack of convenience.

Security professionals and other security-conscious users are getting more and more options, but the average person continues to value convenience and ease of use above all else, and would like security to simply be provided for them automatically. They don’t want to have to take responsibility for preventing their online bank account from being hacked—they want the bank to take care of that.

In fact, since users will quickly abandon services that are too difficult to use, online services focus much more on improving usability than on security. This is illustrated by a step back in security that technology companies have taken over the years, by standardizing on the use of email addresses as usernames. In the past, you could set a unique username for each account, making it far more difficult for cybercriminals to gain access to your account on one service by stealing your credentials from another. But since remembering both usernames and passwords was hard for users, and online services needed users’ email addresses anyway, they have collectively chosen to consolidate the username and email address into a single identifier. This, of course, has fuelled credential stuffing attacks and automated fraud across all major online services, leveraging billions of spilled credentials through attack tools like Sentry MBA.

The future includes more passwords, for now

The reason that we still have passwords is because we as users continue to demand their advantages, and haven’t come up with anything that preserves those while addressing their drawbacks. Similar to Winston Churchill’s observation on democracy, we might say that passwords are the worst form of authentication—except for all the others that have been tried.

While users are becoming more security conscious, and are learning to accept the friction of multi-factor authentication for the benefit of security, a sea change in user behavior isn’t happening anytime soon. This shifts the burden for security and fraud protection back to online service providers. Given the constraint of delivering a friction-free experience to their users, they are now investing in layered, invisible security mechanisms. These mechanisms allow them to provide the benefits of passwords with defense against their drawbacks, by doing things such as detecting when stolen passwords are used (as recommended by NIST) or protecting against credential stuffing attacks.

It’s World Password Day. While technologies like Apple’s Touch ID afford us great conveniences, and may eventually result in many people being able to bypass re-entering their passwords much of the time, they do not replace those passwords. We’re not “killing” the password anytime soon, so this May 4th, let’s make sure we continue to promote good password practices.

The Right to Buy Tickets

Young people waiting in line to buy tickets in NewYork.

With President Obama’s signing of the Better Online Ticket Sales (BOTS) Act of 2016 and the passing of recent legislation in New York, there are signs of hope that beginning in 2017, humans may once again have a fighting chance of purchasing a ticket to a hot concert, show or event.

It took ticket prices reaching $1000 per head for the award-winning Broadway show “Hamilton”, to force action against ticket bots getting the best seats in the house. Lin-Manuel Miranda who created and stars in Hamilton wrote a compelling Op-Ed in the New York Times in June 2016 entitled “Stop the Bots from Killing Broadway.” Finally, in December New York Gov. Cuomo passed a bill to make ticket bot purchases illegal. As one of the founding fathers of the US Constitution, it seems that Hamilton would have approved of an amendment that protected “the right to buy tickets.”

So how did ticket bots get control over the ticket purchases? The cybercriminal ecosystem has evolved over the past few years to make it easier to launch automated attacks on web and mobile apps with the purpose of stealing assets. In the case of ticket bots, automated scripts running on rented botnets enable the immediate and rapid purchase of tickets to popular events once they go on sale. Humans don’t have a chance against a machine intent on purchasing tickets. Until now.

With the recently passed ticket bot legislation, it is officially illegal to use ticket bots with the purpose of automated purchasing. Now ticket sellers  are protected against fraud by state fines and possible jail time as a deterrent.  With this new legislation, ticket sellers must also tighten up their defenses so that they can prevent the use of ticket bots proactively. Just stating that the use of automation and ticket bots is not allowed will no longer be sufficient as a defense.

Enforcing this legislation will have some challenges given the number of parties involved in automated ticket purchases. The illegal ticket reseller is in many cases at the outer edge of a cybercriminal ecosystem that is rapidly building out infrastructure and services on the Dark Web. In addition to automated ticket purchases, automated credential stuffing attacks for account takeover and malicious content scraping are affecting retail, travel and ecommerce businesses. The threat of fines and possible jail time for ticket bots will hopefully go some way to drying up some of the demand for cybercriminal automation.

Shows such as Hamilton were created for humans to enjoy, and at Shape Security we believe consumers shouldn’t have to fight bots to get a ticket. Every day at Shape Security we help major companies defend against automated attacks by bots, and we applaud this new legislation outlawing ticket bots.

Contributing to the Future

The mission of the Web Application Security Working Group, part of the Security Activity, is to develop security and policy mechanisms to improve the security of Web Applications, and enable secure cross-origin communication.

If you work with websites, you are probably already familiar with the web features that the WebAppSec WG has recently introduced. But not many web developers (or even web security specialists) feel comfortable reading or referencing the specifications for these features.

I typically hear one of two things when I mention WebAppSec WG web features:

  1. Specifications are hard to read. I’d rather read up on this topic at [some other website].
  2. This feature does not really cover my use-case. I’ll just find a workaround.

Specifications are not always the best source if you are looking to get an introduction to a feature, but once you are familiar with it, the specification should be the first place you go when looking for a reference or clarification. And if you feel the language of the specification can be better or that more examples are needed, go ahead and propose the change!

To cover the second complaint, I’d like to detail out our experience contributing a feature to a WebAppSec WG specification. I hope to clarify the process and debunk the myth that your opinion is going to be unheard or that you can’t, as an individual, make a meaningful contribution to a web feature used by millions.

Background

Content Security Policy is a WebAppSec WG standard that allows a website author to, among other things, declare the list of endpoints with which a web page is expecting to communicate. Another great WebAppSec WG standard, SRI, allows a website author to ensure that the resources received by their web page (like scripts, images, and stylesheets) have the expected content. Together, these web features significantly reduce the risk that an attacker can substitute web page resources for their own malicious resources.

I helped standardise and implement require-sri-for, a new CSP directive that mandates SRI integrity metadata to be present before requesting any subresource of a given type.

Currently, SRI works with resources referenced by script and link HTML elements. Also, the Request interface of the Fetch API allows to specify the expected integrity metadata. For example, Content-Security-Policy: require-sri-for script style; extends the expectations and forbids pulling in any resources of a given type without integrity metadata.

Contributing to a WebAppSec WG Specification

Unlike some other working groups, there is no formal process on how to start contributing to W3C’s Web Application Security Working Group specifications, and it might look scary. It is actually not, and usually flows in the following order:

  1. A feature idea forms in somebody’s head enough to be expressed as a paragraph of text.
  2. A paragraph or two is proposed either in WebAppSec’s public mailing list or in the Github Issues section of the relevant specification. Ideally, examples, algorithms and corner-cases are included.
  3. After some discussion, which can sometimes take quite a while, the proposal starts to be formalised as a patch to the specification.
  4. The specification strategy is debated, wording details are finalised, and the patch lands in the specification.
  5. Browser vendors implement the feature.
  6. Websites start using the feature.

Anyone can participate in any phase of feature development, and I’ll go over the require-sri-fordevelopment timeline to highlight major phases and show how we participated in the process.

Implementing require-sri-for

  1. Development started in an issue on the WebAppSec GitHub repo opened back in April 2014 by Devdatta Akhawe. He wonders how one might describe a desire to require SRI metadata, e.g. the integrity hash, be present for all subresources of a given type.
  2. Much time passes. SRI is supported by Chrome and Firefox. Github is among first big websites to use it in the wild.
  3. A year later, Github folks raise the same question that Dev did on the public-webappsec mailing list, with an addition of having an actual use case: they intended to have an integrity attribute on every script they load, but days later after deplyoing the SRI feature, determined that they had missed one script file.
  4. Neil from Github Security starts writing up a paragraph in the CSP specification to cover a feature that would enforce integrity attribute on scripts and styles. Lots of discussion irons out the details that were not covered in the earlier email thread.
  5. I pick up the PR and move it to the SRI specification GitHub repo. 65 comments later, it lands in the SRI spec v2.
  6. Frederik Braun patches Firefox Nightly with require-sri-for implementation.
  7. I submit a PR to Chromium with basic implementation. 85 comments later, it evolves into a new Chrome platform feature and lands with plans to be released in Chrome 54.

Resources

Specification development is happening on Github, and there are many great specifications that you should be looking at:

We Are Hiring!

If you reached here, there is a chance that Shape has a career that looks interesting to you.

Avivah Litan at Gartner: Impact of Automated Attacks on B2C Websites

Avivah Litan, Gartner VP and distinguished analyst, is well known for covering big data analytics for cybersecurity & fraud as well as fraud detection & prevention solutions. In this educational webcast, she discusses automated website attacks and their impact on global business to consumer (B2C) brands.


Refer to this link to watch the videos.


Key highlights include:

  • How Gartner defines automated attacks on websites
  • How existing controls, such as device analytics, velocity checks, geolocation, and IP address whitelisting are defeated by attackers
  • How cybercriminals monetize their automated website attacks
  • And, most importantly, how to stop automated attacks